NEW SCHEME

	 	 	 	0.000	10
USN			35.010		

Fourth Semester B.E. Degree Examination, January/February 2005

BM/EC/EE/TE/ML/IT Field Theory

Time: 3 hrs.]

[Max.Marks: 100

Note: 1) Answer any FIVE full questions.
2) Assume the missing data, if any.

- (a) State and explain Coulomb's law of force between two point charges and mention the units of quantities in the force equation.

 (5 Marks)
 - (b) Two particles having charges 2 nano Coulomb and 5 nano Coulomb are spaced 80 cm apart. Determine the electric field intensity at a point P situated at a distance 0.5 meters from each of the two particles. Assume the medium to be bakellite having dielectric constant of 5.
 - (c) Find the electric field strength at the point M(1,2,-1), given the potential $V=3x^2y+2yz^2+3xyz$. (5 Marks)
- 2. (a) Show that the electric field at any point due to an infinite sheet of charge is independent of the distance to the point from the sheet. (10 Marks)
 - (b) A uniform line charge of linear charge density 25 nano Coulomb/m lies on the line x = -3m, y = 0 and z = 4m in free space. Find the electric field intensity at a point (2,15,3)m.
 - (c) A point charge of 30 nano Coulomb is located at the origin in Cartesian coordinates. Find the electric flux density D at (1,3,-4)m (5 Marks)
- 3. (a) State Gauss's law. Obtain Gauss's law in point form. (5 Marks)
 - (b) Obtain the boundary conditions for perfect dielectric materials of permittivities \in_1 and \in_2 .
 - (c) At the boundary between glass ($\in_r = 4$) and air, the lines of electric field make an angle of 40^0 with normal to the boundary. If electric flux density in air is 0.25 micro Coulomb/ m^2 , determine the orientation and magnitude of electric flux density in air.
- **4.** (a) Using Laplace's equation, derive the expression for the potential at a point in an infinitely long co-axial cable with inner radius a and outer radius b.
 - (b) A spherical condenser has capacitance of 54 pico farad. It consists of two concentric spheres differeing in radii by 4 cm and having air as dielectric. Find their radii. (8 Marks)
- 5. (a) Obtain the expression for magnetic flux density at a point due to a current carrying straight conductor of finite length. Extend the analysis for the case of infinitely long straight conductor.

 (10 Marks)
 - (b) Explain the concept of vector magnetic potential.

(5 Marks)

- (c) A circuit carrying a direct current of 5A form a regular hexagon inscribed in a circle of radius 1m. Calculate the magnetic flux density at the centre of the current hexagon. Assume the medium to be freespace. (5 Marks)
- 6. (a) Obtain the solution of wave equation for uniform plane wave propagating in free space. (10 Marks)
 - (b) Derive wave equation in \vec{E} and \vec{H} for a conducting medium.

(10 Marks)

Fou

7. (a) State and prove Poynting's theorem.

(10 Marks)

- (b) For a uniform plane wave travelling in x direction in free space, $E_y = 10 sin(2\pi \cdot 10^8 t \beta x)$. Find the phase constant, phase velocity and the expression for H_z , if $E_z = H_y = 0$. (10 Marks)
- **8.** Write explanatory notes on :
 - (a) Statement and proof of divergence theorem.
 - (b) Uniqueness theorem and its significance.
 - (c) Maxwell's equation in point and integral forms applicable to time varying fields.

** * **